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Abstract

Statistical analyses of repair models are often concerned with the distribution of the time to
first repair. From that distribution and knowledge of the repair scheme, one can derive other
results such as the expected number of repairs by time t, and so forth. Various nonparametric
procedures have been developed for inference about F. We discuss various frequentist and
Bayesian approaches, and present some recent results. The results apply to a number of
models including those of Brown and Proschan (1983) and Block, Borges and Savits (1985).

1 Introduction

Consider a system consisting of one unit. Let the lifetime distribution of the unit be F . When the unit
fails in the field, say, at time X1, cost considerations typically preclude replacement with a brand new
unit, though this would be preferable to maintain high reliability. Instead, the unit is repaired and put
back in use. A repair model postulates the conditional distribution of the life, X2, of the repaired unit
can depend on previous failure times of the unit, any covariates observed till the last failure time and on
F . The repair process can be repeated and we observe S1, S2, . . . the failure times of the system. Note
that X1 = S1, X2 = S2 − S1, . . . are the inter-failure times of the system which are also the same as
the extra amounts of life given to the system after each repair. Let Y1, Y2, . . . be another sequence of
random variables which evolve with the system and are observed after each repair. These may be viewed
as environmental variables, “strengths” or “degrees” of repairs, etc. Let Fn = σ(X1, . . . , Xn, Y1, . . . , Yn)
be the σ-field of the random variables available till the time of the nth failure. It is of interest to estimate
the life distribution F (and associated cumulative hazard function and failure rate) of the time to first
failure of a brand new unit using data on repeated failures of such a system subject to a model of repair.

2 Repair models

For a ≥ 0, the residual life distribution Fa(x) is defined by

F̄a(x) = 1− Fa(x) =
F̄ (a + x)

F̄ (x)
, for x > 0. (1)

A general repair model may be specified as follows, using the concept of effective ages:

P (X1 ≤ x) = F (x),

and
P (Xn > x|Fn−1) = F̄An

(x), n = 2, . . .

where An, called the effective age after the (n− 1)st failure, is Fn−1-measurable, n = 2, 3, . . .. Note that
F0 is the trivial σ-field and we set A1 = 0.

We state below some of the standard repair models in terms of the definition above. In each case, one
just has to specify the sequence of effective ages {An}.



A “Replace with a new unit on failure” model corresponds to setting the effective ages An to be 0 for
all n.

A “Perform minimal repair forever” model, corresponds to putting An = Xn−1, n = 2, 3, . . ..
For the Brown and Proschan (1983) randomized minimum repair model (BP model), one chooses a

number p in (0, 1) and auxiliary random variables Y1, Y2, . . . which are i.i.d. uniform and defines

An =
{

0 if Yn−1 ≤ p

Xn−1 if Yn−1 > p
,

for n = 2, 3, . . .

For the Block-Borges-Savits (1985) randomized minimal repair model (BBS model), which extends
the Brown-Proschan model, one employs a function p(·) on (0,∞) taking values in [0,1] and defines

An =
{

0 if Yn−1 ≤ p(Xn−1)
Xn−1 if Yn−1 > p(Xn−1)

.

Kijima (1989) introduced models that feature “degree of repair” random variables which allow for
repairs that can be described as being somewhere between perfect and minimal repairs, that is, repairs
that could do better than minimal repair without necessarily restoring the unit to a state equivalent to
that of a new unit. In Kijima’s (1989) models I and II, the effective age An, n = 1, 2, . . ., to which the
system is restored after repair depends not only in its age just before failure but also on the degree of
repair random variables Dn, n = 1, 2, . . .. It will be assumed that the D’s are independently distributed
on [0, 1] and independent of other processes.

The effective age An at the time of the (n − 1)th failure will depend only on Fn−1
def
=

σ(X1, . . . , Xn−1, D1, . . . , Dn−1). We will define A1 = 0. The distribution of Xn, the nth interfailure
time given Fn−1, will depend only on the effective age An.

Kijima’s model I defines An by

An =
n−1∑
i=1

DiXi, n > 1.

Note that with this specification
An+1 = An + DnXn

and the An’s are increasing and An+1 ≤ An + Xn indicating that a better than minimal repair has been
performed.

Kijima’s model II defines An by

An =
n−1∑
k=1

(
n−1∏
i=k

Di

)
Xk, n > 1.

Note that the effective ages satisfy
An+1 = Dn(An + Xn) (2)

which is less than An + Xn, once again indicating better than minimal repair.
When data from the BBS model are observed till the time of the n + 1st perfect repair, i.e. when n

independent sequences of observations starting from a brand new unit each time, are obtained, Whitaker
and Samaniego (1989) and Hollander, Presnell and Sethuraman (1992) proposed frequentist estimates for
F . They also gave the asymptotic distributions, tests for F = F0, asymptotic confidence intervals for F ,
etc.

For the above frequentist methods of estimation of F the data acquisition is method is structured
to obtain n i.i.d. sequences of observations. This is an unnatural requirement. In the next section, we
propose a Bayesian method to estimate F for the BBS model where observation does not have to end
before the next perfect repair.



3 Bayesian Methods in Repair Models

We will use the symbol P to denote the probability measure associated with F and the symbol Pr to
denote the joint probability distribution of the the variables under consideration. The Bayesian method
to estimate F or P from data based on a general repair model will require the use of a prior distribution
for the distribution function F . It will be convenient to restate this as the Bayesian estimation of a
probability measure P on a general state space (X ,A) where the data X1, . . . , Xn arise from a repair
model, properly defined at this level of generality, to include the repair models mentioned in the previous
section. The class of probability measures on (X ,A) will be denoted by P. The Bayesian methods will
consist of three steps:

[1] Definition of suitable classes of prior distributions for P .

[2] Definition of general repair models.

[3] Calculation of posterior distribution of P given the data.

For any P ∈ P and non-empty set B ∈ A, define the restricted probability measure PB as

PB(A) =

{
P (B∩A)

P (B) if P (B) 6= 0
φB(A) if P (B) = 0

for all A ∈ A.
A general repair model may be specified as follows, using the concept of effective restriction sets

An, n = 1, 2, . . . as follows:
Pr(X1 ∈ A) = P (A),

and
Pr(Xn ∈ A|Fn−1) = PAn

(A)

n = 2, . . ., where An is a measurable set in Fn−1. The choice of the random effective restriction sets
An, depending on the previous data, defines the repair model. This includes all the models described in
Section 2. This completes the description of step 2 in the Bayesian approach.

One can think of arbitrary priors for P to complete step 1, but this will not allow us to complete the
main step, namely step 3. Thus we should choose priors α for P so that, if

P ∼ α, and A is a measurable set and X|P ∼ PA,

then we should be able to calculate the distribution of P given X, i.e.

Pr(P ∈ B|X).

If A were the whole space X , then this calculation is easy if we use Dirichlet priors. This problem
is already difficult if A is a proper subset, which is the case in repair models. We solve this problem
and extend it by showing that we can use a larger class of priors, called partition based priors which
include Dirichlet and generalized Dirichlet priors, and still carry out the calculation of posteriors under
general repair models. Two examples of comparisons of the Bayesian estimates obtained this way with
the frequentist Whitaker-Samaniego estimate in the BBS repair model are given in the graphs below.
The first example uses 13 observations from a χ2 distribution with 5 degrees of freedom and with 3
perfect repairs. The second example is based on the reduced Proschan airconditioner data; it consists
of 24 observations and 4 perfect repairs. In both cases the prior distribution of P was assumed to be
a Dirichlet with parameter γβ(·) where β is an exponential distribution with a parameter equal to the
reciprocal of the sample mean, and the constant γ was taken to be 4. The figures do not change very
much if we vary the constant γ around 4.

An important point to note is that while the Whitaker-Samaniego estimate requires that the data
stops as soon as it is decided that the next repair will be a perfect repair, the Bayesian method has no
such artificial restriction on the data.
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Figure 1: Comparison of the Bayes and W-S estimates from observations from a χ2 distribution
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Figure 2: Comparison of the Bayes and W-S estimates from the reduced Proschan air conditioner data
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